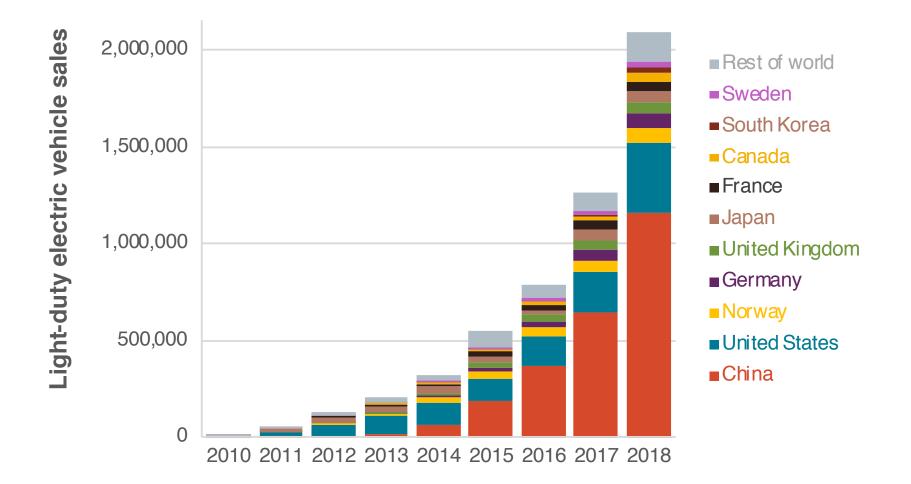
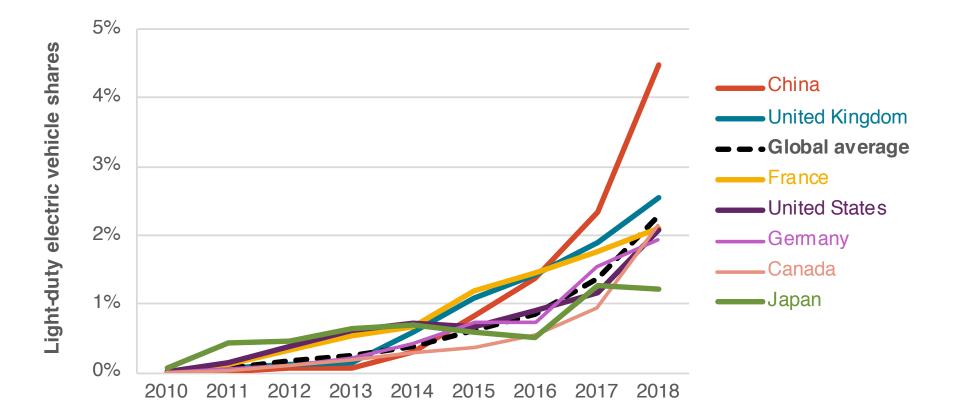
China New Energy Vehicle Market and Policies


Hui He China Regional Director

March 10, 2020 Webinar for MOVE

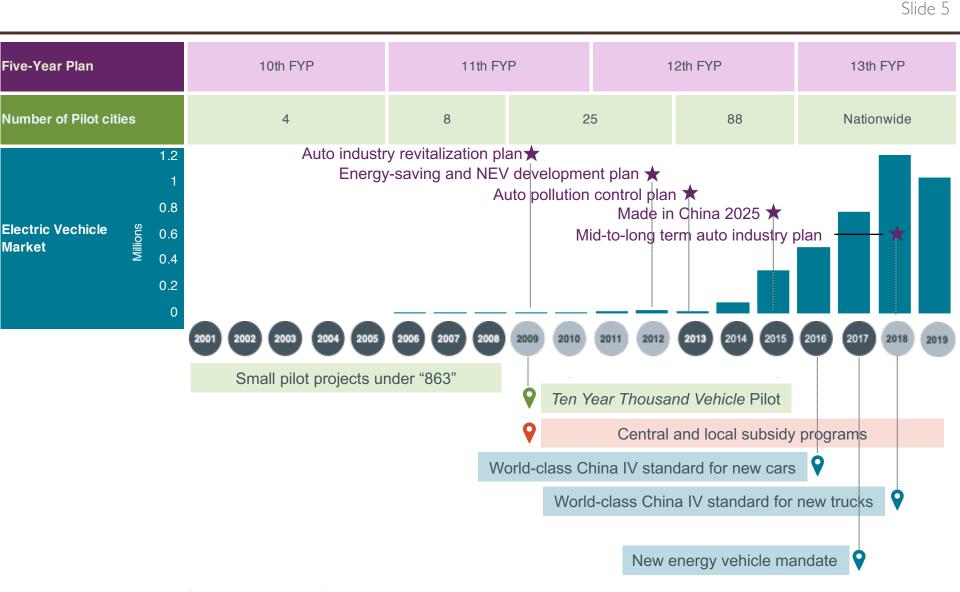
China sold most of world's electric cars


In 2018, China sold 1.16 million light-duty EVs, or 56% of the world total

Slide 2

China's EV share has doubled the global average icct and other major markets

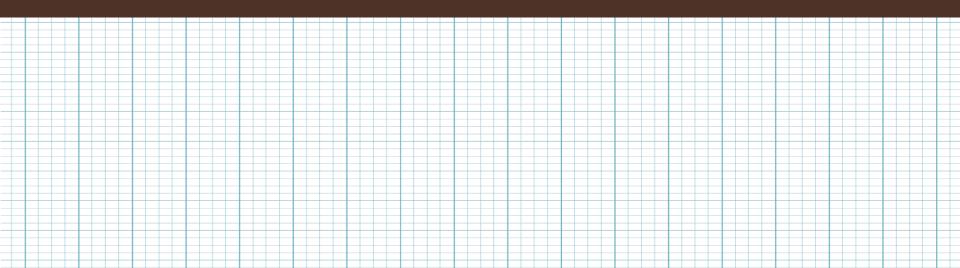
 The global average EV share of new light-duty vehicle sales is around 2% (including all-electric and plug-in hybrids)



Policies in a snapshot

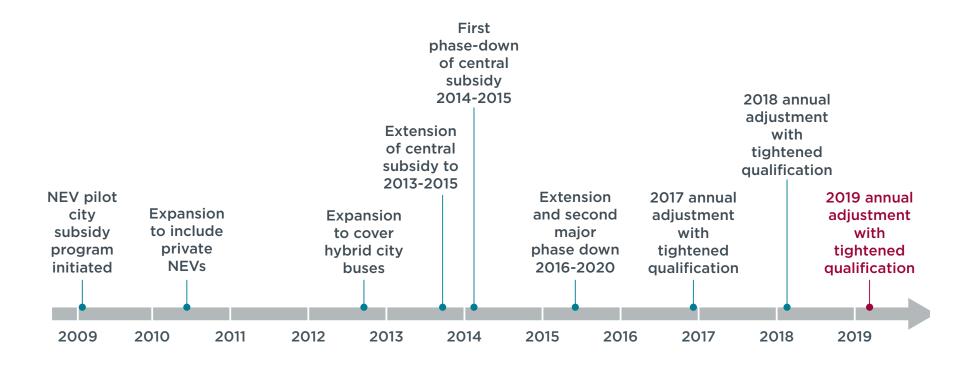
- Macro planning and goals
 - Five-year plans and industry strategic plans: 25% of new sales by 2025
 - Sectoral goals (e.g. for buses)
 - Provincial/local goals driven by air quality needs
- National policies
 - Central subsidy 2009~2020
 - NEV mandate (dual credit) For LDVs 2019-2020
- Subnational policies
 - Pilot EV cities
 - Innovative local measures
- Charging infrastructure

Historical timeline of major policies and market

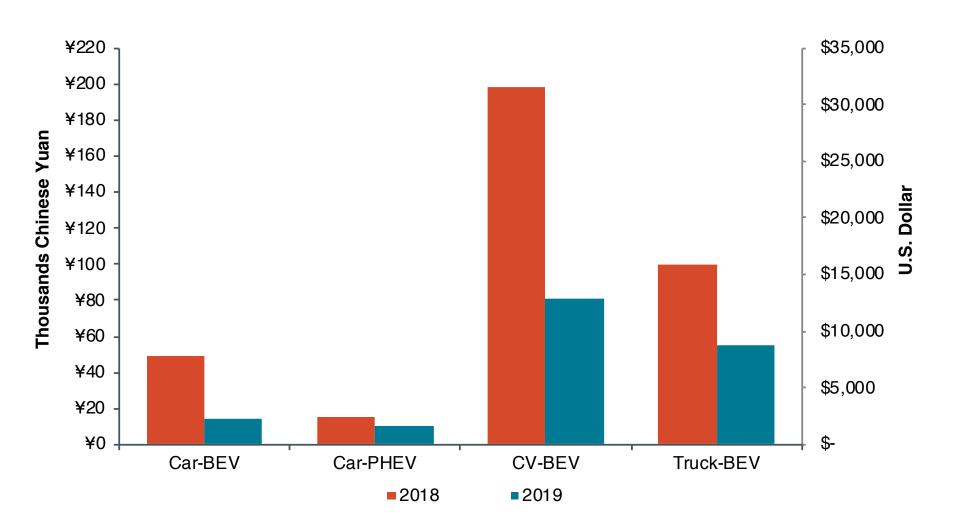


ON CLEAN TRANSPORTATI

Subsidy Regulations



Central Subsidy Policy



Timeline of central subsidy

Design of central subsidy overtime (car)

icct
THE INTERNATIONAL COUNCIL ON CLEAN TRANSPORTATION
Slide 9

VEHICLE	TECHNOLOGY	YEAR	DESIGN PARAMETERS											
TYPE	reonnoeour	TEAN	EF	ER	LH	BS	BD	BM	CS	SP	FS	RP	VM	
	BEV	2016		X								Χ		
	BEV	2017	X	X			X			X				
	BEV	2018	X	X		X	X			Χ				
	BEV	2019	X	X		X	X			X				
Decement	PHEV	2016		Χ							Χ			
Passenger Cars	PHEV	2017	X	X							X			
vare	PHEV	2018		Χ		X					X			
	PHEV	2019		X		X					X			
	FCV	2016		Χ										
	FCV	2017		X								X		
	FCV	2018										X		

EF= Energy Efficiency, measured in Wh/100-km for passenger cars, or Wh/km kg for buses, coaches, trucks and vocational vehicles

ER=electric range, meausred in km

LH=Length of vehicle

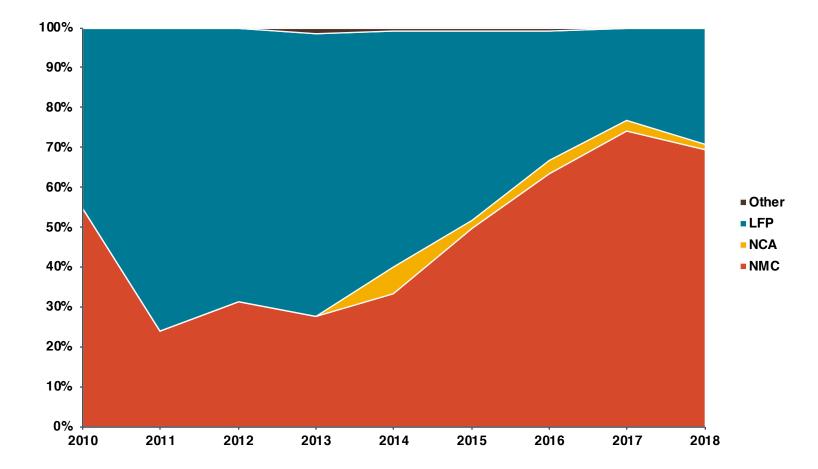
BS=Battery size, measured in kWh

BD=Battery enery density, measured in Wh/kg

BM=Battery mass as a percentage of vehicle curb mass, measured in %

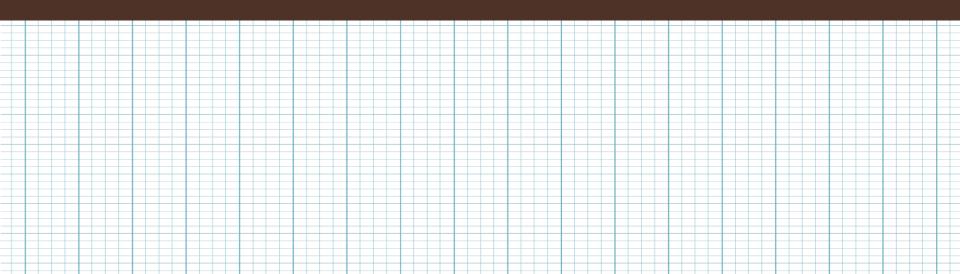
CS=Charging speed of batteries

SP=Maximum vehicle speed


FS=Fuel saving compared with conventional vehicles

RP=Rated power

Impact of policy design: battery chemistry

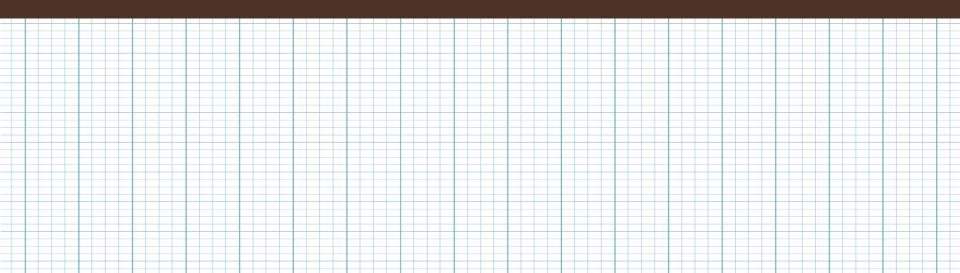

 Driven by the requirement on battery energy density and electric range, the market share of high-density battery technologies NMC increased substantially

Slide 10

EV Mandate Policy

Government	Target year	Percentage of EV credits	ICCT estimate of percent EV sales
China NEV	2019-2020 2021-2023	10-12% 14-18%	~5% ~8%
California ZEV	2025	22%	8%
Quebec ZEV	2025	22%	10%
British Columbia ZEV (legislation passed May 2019)	2025 2030 2040		10% 30% 100%

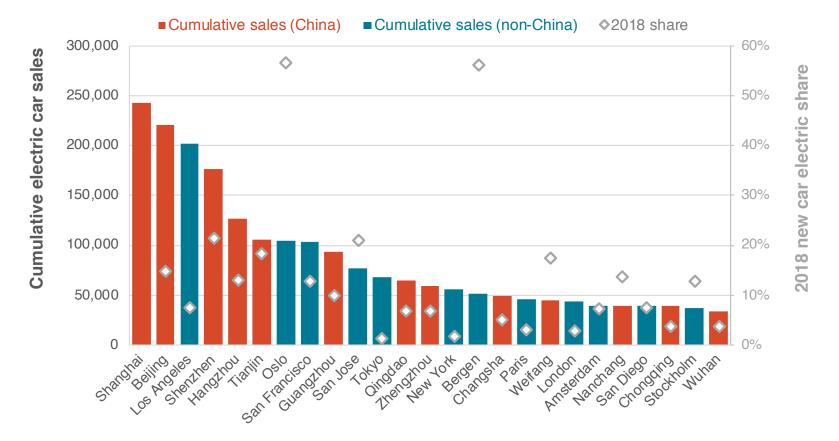
- China's New Energy Vehicle mandate is integrated into its existing fuel economy standards, an excellent first step but in need to substantial improvement in the next iteration of the standards.
- California forecasts only 8% EV penetration in 2025 due to credit multipliers which needs substantial enhancements to achieve a ~ 30% target by 2030.
- Quebec's policy is nearly identical to California's but with fewer credits



	PV Prod. 2018	PV Mkt% 2018	CAFC Credit 2018	NEV Credit 2018	Required NEV Credit 2020
Ford	384,336	1.7%	(199,855)	4,238	46,120
GM	3,343,502	15.1%	(852,709)	115,911	401,220
Hyundai	800,625	3.6%	(208,163)	9,618	96,075
Kia	359,470	1.6%	(32,353)	16,215	43,136
Mazda	162,965	0.7%	(6,519)	-	· 19,556
Mercedes-Benz	511,299	2.3%	15,624	2	61,356
Mitsubishi	146,229	0.7%	(102,361)	7,452	17,547
Nissan	31,006	0.1%	(10,543)	7,158	3,721
PSA	249,874	1.1%	(62,499)	-	· 29,985
Toyota	713,995	3.2%	173,358	-	. 85,679
Volkswagen	4,113,943	18.5%	265,498	33,820	493,673
Honda	1,490,471	6.7%	(97,241)	723	178,857
Renault	104,420	0.5%	(84,493)	-	12,530
BMW	490,151	2.2%	426,431	43,144	58,818

Original data source: MIIT

Local Policies



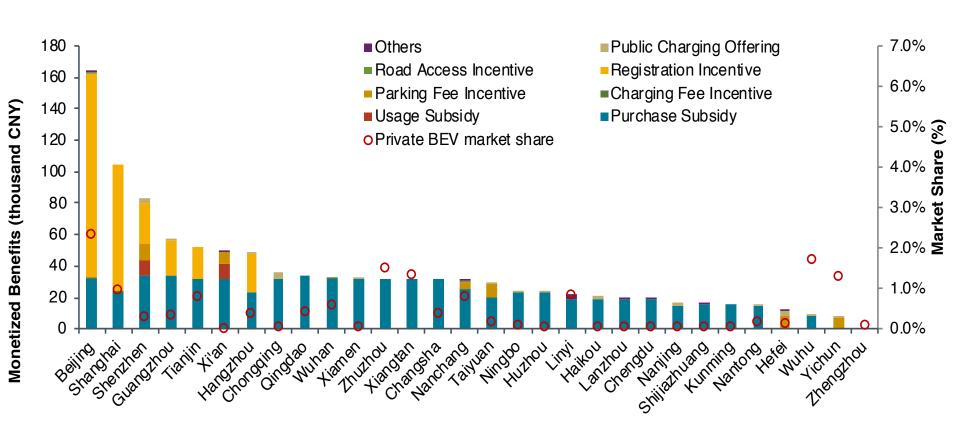
Thirteen of top 25 global EV city markets are in China

- 13 of the top-25 global markets by EV market size are in China
- The path to a mainstream market: Regulation, incentives, infrastructure, local actions

Slide 15

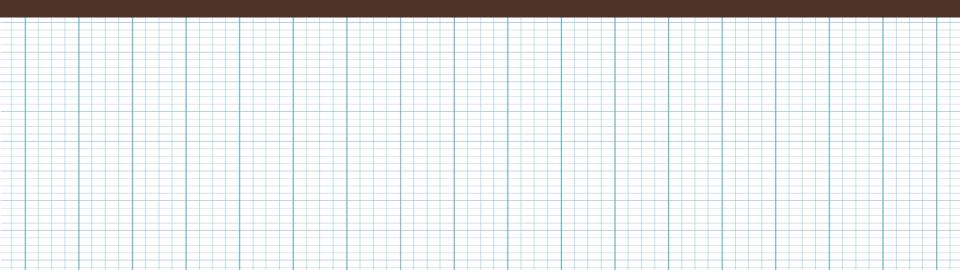
Based on Hall, Cui, & Lutsey, 2019. https://theicct.org/publications/ev-capitals-of-the-world-2019

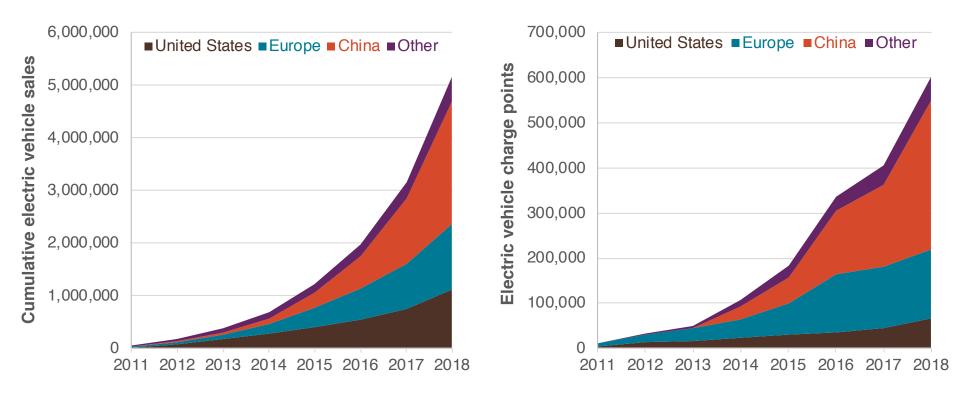
Local policy catalog



Country	Metropolitan area	Planned zero-emission area	Exemption from vehicle licensing restriction	Purchase incentive	Charging station incentives	EV-ready building and parking codes	Priority road access	Parking benefits	Electric taxi promotion	Electric car-sharing	City fleet electrification goal	100% zero emission bus target	Consumer awareness program
	Shanghai		×	\otimes	\otimes	×		×	\otimes	×	×	0	×
	Beijing			\otimes	\otimes	×	×		\otimes	×	×	0	×
	Shenzhen		×	\otimes	\otimes	×	×	×	\otimes	×	×	\otimes	×
	Hangzhou		×	\otimes	0	×	×		\otimes	×		0	×
	Tianjin		×	\otimes	\bigcirc	×	×	×	\otimes	×	×	\bigcirc	×
	Guangzhou		×	\otimes	\otimes	×			\otimes	×		\otimes	×
China	Qingdao			0	\bigcirc	×		×	\otimes	×		0	×
	Zhengzhou			\otimes	\bigcirc	×	×	×	\otimes	×	×	0	×
	Changsha			\otimes	\bigcirc	×		×	\otimes	×		0	×
	Weifang			0	\bigcirc	×		×	\otimes	×			×
	Nanchang			0	\otimes	×	×	×	\otimes	×		\bigcirc	×
	Chongqing			\otimes	\otimes	×	×	×	\otimes	×		0	×
	Wuhan			\otimes	\otimes		×	×	\otimes	×		0	×

X = action by local government; (()) = action by state or national government; (()) = action at multiple levels


Impact of local policies


Charging Infrastructure

Top markets invest in charging infrastructure

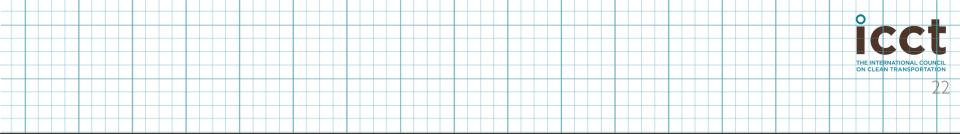
- EV sales and their charging infrastructure ecosystem grow together
- Countries are developing—and adapting—their charging strategies by shifting from simply putting more chargers on the ground to better catering local consumer needs

Summary

- In China, the macro plans set the EV target and lead the development of policies.
- The decade-long subsidy program has largely driven the EV market.
- The design of the subsidy program has profound impact on vehicle technologies and market, such as long-range, high battery density cars.
- At the national level, China is transitioning from fiscal incentives to EV sales mandates. Enforcement is the key for a true credit market.
- Cities adopted a wide range of innovative polices, such as vehicle registration, parking, road access incentives and government-private partnership in fleet programs.
- Registration (license plate) incentive was found to have major impact on consumer market.
- China invested heavily in charging infrastructure.

Thank you! Questions?

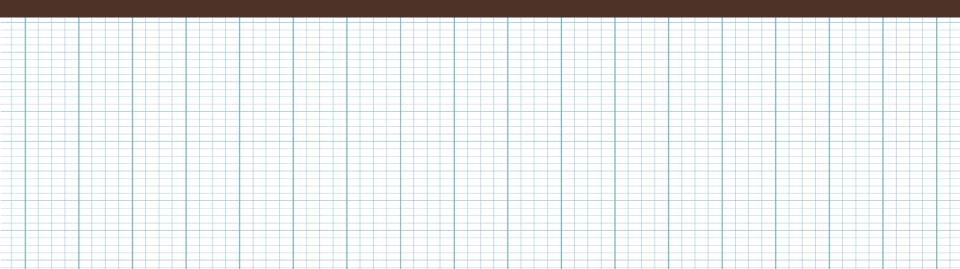
More info


ICCT electric vehicle page:

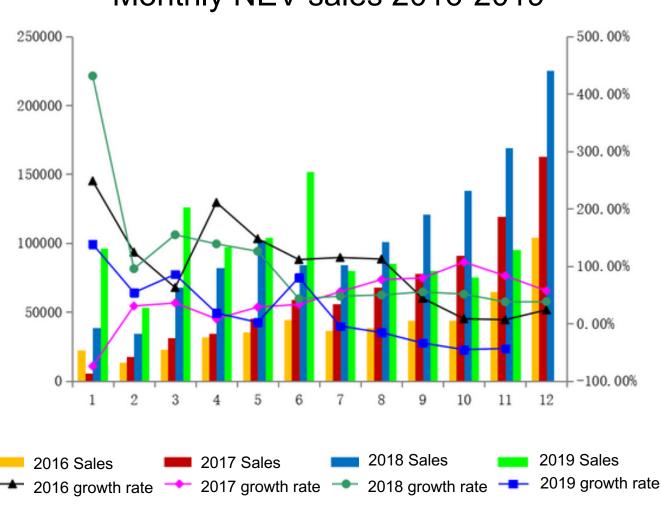
http://theicct.org/electric-vehicles

ZEV Alliance:

http://www.zevalliance.org


Email: hui@theicct.org

Back up slides



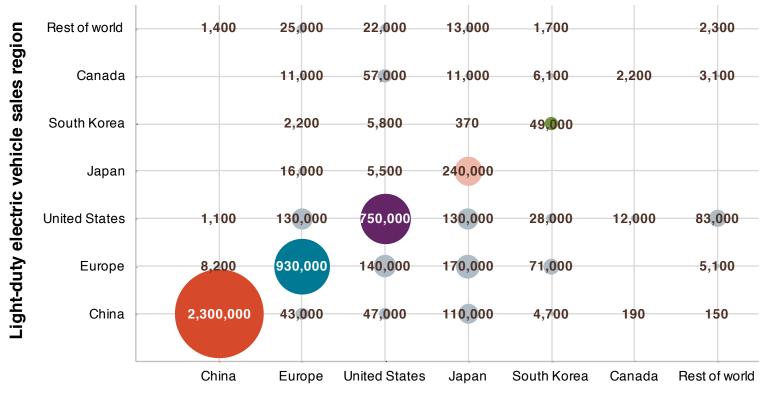
Challenges

Market reliance on subsidy?

Monthly NEV sales 2016-2019

Original data source: MIIT

Local protectionism?



	BAIC	BYD	Roewe	Zotye	Zhidou	JMC	Changan	Chery	JAC	Geely	Kandi	Baojun	DFW	HAWAI	Haima
Zhejiang	7%	11%	3%	12%	9%	5%	6%	2%	2%	20%	16%	0%	7%	0%	0%
Shanghai	15%	23%	50%	0%	0%	0%	2%	5%	5%	0%	0%	0%	0%	0%	0%
Shandong	41%	2%	1%	8%	6%	11%	5%	9%	15%	0%	0%	0%	0%	1%	1%
Guangdong	11%	52%	9%	7%	10%	1%	2%	5%	2%	1%	0%	0%	0%	0%	0%
Beijing 🤇	30%	32%	5%	3%	1%	0%	11%	3%	3%	12%	0%	0%	0%	0%	0%
Tianjin	14%	13%	3%	12%	17%	1%	3%	10%	9%	5%	1%	0%	0%	12%	1%
Henan	23%	3%	1%	13%	17%	10%	7%	4%	0%	0%	0%	0%	0%	2%	19%
Jiangsu	37%	7%	5%	8%	12%	8%	3%	6%	5%	2%	4%	0%	1%	1%	1%
Hunan	16%	5%	0%	28%	20%	8%	1%	1%	12%	2%	0%	0%	5%	1%	0%
Jiangxi	7%	1%	0%	1%	16	89%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Fujian	42%	16%	1%	5%	8%	2%	7%	12%	4%	3%	1%	0%	0%	0%	0%
Guangxi	1%	3%	0%	1%	0%	1%	0%	3%	1%	0%	0%	89%	0%	0%	0%
Anhui	4%	2%	1%	2%	0%	1%	3%	32%	53%	0%	0%	0%	0%	0%	0%
Yunnan	44%	8%	1%	3%	3%	3%	34%	4%	0%	0%	0%	0%	0%	0%	0%
Chongqing	8%	3%	0%	10%	19%	1%	54%	1%	0%	3%	0%	0%	0%	0%	0%

Isolated market?

- China's EV developments: Leading market and producer, but still relatively isolated
 - Other EV-producing countries are exporting EVs much more to other markets
- China has an immense opportunity to expand EV shipments abroad

Light-duty electric vehicle production region

Design of central subsidy overtime (bus)

icct
THE INTERNATIONAL COUNCIL ON CLEAN TRANSPORTATION
Slide 27

VEHICLE	TECHNOLOGY	VEAD	YEAR DESIGN PARAMETERS										
TYPE	TECHNOLOGI	TLAN	EF	ER	LH	BS	BD	BM	CS	SP	FS	RP	VM
	BEV	2016	X	X									
	BEV	2017	X	X			X	X	X				
	BEV	2018	X	Х			X	Х	X				
	BEV	2019	X	Χ			X		X				
	PHEV	2016		X	Χ						Χ		
Bus/Coach	PHEV	2017	X					X			X		
	PHEV	2018	Х	Χ				Х			X		
	PHEV	2019		Χ							X		
	FCV	2016		Χ									
	FCV	2017		X								Χ	
	FCV	2018											

EF= Energy Efficiency, measured in Wh/100-km for passenger cars, or Wh/km kg for buses, coaches, trucks and vocational vehicles

ER=electric range, meausred in km

LH=Length of vehicle

BS=Battery size, measured in kWh

BD=Battery enery density, measured in Wh/kg

BM=Battery mass as a percentage of vehicle curb mass, measured in %

CS=Charging speed of batteries

SP=Maximum vehicle speed

FS=Fuel saving compared with conventional vehicles

RP=Rated power

Design of central subsidy overtime (truck)

VEHICLE	TECHNOLOGY	YEAR	DESIGN PARAMETERS											
TYPE			EF	ER	LH	BS	BD	BM	CS	SP	FS	RP	VM	
	BEV	2016		Χ										
	BEV	2017	X				X							
	BEV	2018	X				Χ							
	BEV	2019	X	X			X							
TruckAlegat	PHEV	2016		Χ							Χ			
Truck/Vocat ional	PHEV	2017					X							
	PHEV	2018		Χ							Χ			
	PHEV	2019		Χ							Χ			
	FCV	2016		Χ										
	FCV	2017		X								X		
	FCV	2018												

EF= Energy Efficiency, measured in Wh/100-km for passenger cars, or Wh/km kg for buses, coaches, trucks and vocational vehicles

ER=electric range, meausred in km

LH=Length of vehicle

BS=Battery size, measured in kWh

BD=Battery enery density, measured in Wh/kg

BM=Battery mass as a percentage of vehicle curb mass, measured in %

CS=Charging speed of batteries

SP=Maximum vehicle speed

FS=Fuel saving compared with conventional vehicles

RP=Rated power